

TEST REPORT SHIELDING EFFECTIVENESS per ASTM 4935 CHOMERICS PREMIER™ CONDUCTIVE PLASTIC

Prepared by:

CHOMERICS R&D 84 DRAGON COURT WOBURN, MA 01801

Date:

February 3, 2006

Test Report Number: TR 1006 EN 0206

Chomerics Approved Signatory:

This report shall not be reproduced except in full without the written approval of Chomerics.

The user, through its own analysis and testing, is solely responsible for making the final selection of the system and components and assuring that all performance, endurance, maintenance, safety and warning requirements of the application are met. The user must analyze all aspects of the application, follow applicable industry standards, and follow the information concerning the product in the current product catalog and in any other materials provided from Parker or its subsidiaries or authorized distributors.

PREMIER is a trademark of Parker Hannifin Corporation. Chomerics is a registered trademark of Parker Hannifin Corporation © February 2006. All rights reserved.

Document # TR 1006 EN 0206 Date: February 3, 2006 Page 1 of 15

1. INTRODUCTION

This document is written to report the shielding effectiveness test method used to evaluate the Chomerics PREMIER conductive plastic materials per ASTM D 4935: Measuring the Electromagnetic Shielding Effectiveness of Planar Materials.

This test method does not exactly duplicate the mechanical and/or electrical performance of PREMIER conductive plastic materials in an actual application. But it does allow evaluations of variation in the conductive plastic. Care should be taken in applying the absolute values obtained from these tests to other geometries or enclosure designs.

2. ADMINISTRATIVE DATA

2.1 Test Facility and Test Personnel

Chomerics Test Service in Woburn, Massachusetts shall perform all the evaluations of the PREMIER conductive plastics.

Chomerics Test Services in Woburn, Massachusetts is an American Association for Laboratory Accreditation (A2LA) accredited facility as defined on Certification Number 1980-01. For Emissions and Immunity testing, the Scope of Accreditation is limited to the following tests: CFR 47, FCC Part 15 Subpart B, CISPR 11, EN 55011, CISPR 13, EN55013, CISPR 14, EN55014-1, CISPR 22, EN55022, AS/NZS 3548, CNS 13438, CNS 13783-1, VCCI, EN 61000-3-2, EN 61000-3-3, EN 50081-1, EN55081-2, EN61000-6-3, EN 61000-6-4, EN 61000-4-2, EN 61000-4-3, EN61000-4-4, EN 61000-4-5, EN 61000-4-6, EN61000-4-8, EN 61000-4-11, EN 50082-1, EN 50082-2, EN 61000-6-1, EN 61000-6-2, IEC/EN 60601-1-2, EN 300 386, EN 61326, CISPR 24, EN55024, CISPR 14, EN 55014-2, EN 50083-2, EN 55103-1, and EN 55103-2. The A2LA Accreditation does not cover any tests in this report that are not listed above.

Chomerics test facility operates under the current revision of Chomerics Quality Assurance (QA) Manual Document Number QA002.

The QA Manual has been constructed to reflect a quality program in accordance with the requirements of the National Institutes of Standards and Technology (NIST), ISO 9002, ISO Guide 25, NIST Handbook 150, EN 45001, MIL-I-45208A, MIL-STD-461D, 462D and Chomerics Quality Assurance Program (QAP).

The QA Manual outlines and describes the procedures for establishing and maintaining the quality of analysis, research, inspection and testing within Chomerics Test Services (CTS).

This test report does not represent an endorsement by the U.S. Government.

The results and/or conclusions within this test report refer and/or apply only to the unit(s) tested as defined by this report.

Measurements performed for this test are traceable to the National Institute of Standards and Technology (NIST) based on the fact that all test equipment used for the measurements were previously calibrated using standards traceable to NIST.

The system amplitude accuracy for the measurements made during the radiated emission tests was +/- 3dB.

The test personnel performing or supervising this test are accredited by the National Association of Radio and Telecommunications Engineers, Inc. (NARTE) as Certified Electromagnetic Compatibility Engineers (N.C.E) and Technicians (N.C.T).

3. TEST SET UP AND CONFIGURATION

3.1 Test Specimens

The reference and load specimens must be of the same material and thickness. For this method, two specimens are considered to have identical thickness if the difference in the average thicknesses is less than 25 microns and the thickness variation within and between specimens is less than 5 percent of the average.

Figure 1 PREMIER Test Samples

Reference

Load

4. PROCEDURE FOR SHIELDING EFFECTIVENESS TEST

The ASTM D 4935 Test Procedure is attached for reference of complete test method.

5. PREMIER SHIELDING EFFECTIVENESS PERFORMANCE

Figure 2

Figure 2 presents data on PREMIER conductive material performance. The graph shows the shielding effectiveness per ASTM D 4935 test method.

All the data show increased shielding as frequency increases as predicted by the absorptive properties of PREMIER. The data collected for the shielding effectiveness tests are based on all resin grades of PREMIER: A220-HT, A230-HTHF, A240-HTHF, A220-FR, A230-FRHF, A240-FRHF, A220-ST, A230-ST, A240-ST. Shielding effectiveness between resin grades within a filler level are virtually identical. The data reported is an average for that filler level and applies to all resin grades.

Document # TR 1006 EN 0206 Date: February 3, 2006 Page 4 of 15

6. ATTACHMENTS

ASTM D 4935: Standard Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials.

Document # TR 1006 EN 0206 Date: February 3, 2006 Page 5 of 15

AUDesignation: D 4935 – 99

AMERICAN SOCIETY FOR TESTING AND MATERIALS 100 Barr Harbor DL, West Constibulosten, PA 19428 Reprinted from the Annual Book of ASTM Standards, Copyright ASTM

of Effectiveness Measuring the Electromagnetic Shielding Standard Test Method for Planar Materials¹

P V This standard is issued under the fixed designation D 4935; the number immediately following the designation indicates the year original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope

electromagnetic (EM) shielding effectiveness (SE) of a planar material due to a plane-wave, far-field EM wave. From the for 1.1 This test method provides a procedure for measuring the tric (E) field SE values may also be calculated from this same far-field data, but their validity and applicability have not been magnetic (H) sources for electrically thin specimens.^{2,3} Elecmeasured data, near-field SE values may be calculated established.

properties of conductivity, permittivity and permeability, mea-surements may be needed at only a few frequencies as the 1.2 The measurement method is valid over a frequency mode (TEM)) at higher frequencies for the size of specimen far-field SE values will be independent of frequency. If the range of 30 MHz to 1.5 GHz. These limits are not exact, but are based on decreasing displacement current due to decreased capacitive coupling at lower frequencies and on overmoding (excitation of modes other than the transverse electromagnetic holder described in this test method. Any number of discrete frequencies may be selected within this range. For electrically in, isotropic materials with frequency-independent electrical material is not electrically thin or if any of the parameters vary with frequency, measurements should be made at many fre-

1.3 This test method is not applicable to cables or connec-LOTS.

quencies within the band of interest.

1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:

D 1711 Terminology Relating to Electrical Insulation⁴

3. Terminology

3.1 Definitions-For definitions of terms used in this test method refer to Terminology D 1711.

3.2 Definitions of Terms Specific to This Standard:

the maximum and minimum signals measurable by the system. range (DR)-the difference between 3.2.1 dynamic

extremely low power or voltage values by unwanted signals SE require extra care in order to avoid contamination of 3.2.1.1 Discussion-Measurement of materials with good from leakage paths.

is much, much (<1/100) less than the electrical wavelength within 3.2.2 electrically thin-the thickness of the specimen the specimen.

3.2.3 far field-that region where E and H are orthogonal to 3.2.4 near field-that region where E and H are not related each other and also to the direction of propagation of energy. by simple rules.

the frequency of the source. This concept of regions is further blurred by reradiating due to scattering by reflecting materials near field and far field is not abrupt, but occurs approximately $\lambda/2\pi$ from a dipole source, where λ is the free-space wave length of or objects that may be distant from the source. The interior of metallic structures often contains a mixture of near-field Discussion-The transition region between 3.2.4.1 regions.

3.2.5 shielding effectiveness (SE)—the ratio of power re-ived with and without a material present for the same incident power. ceived

3.2.5.1 Discussion-It is usually expressed in decibels by the following equation:

$$SE = 10 \log \frac{P_1}{P_2}$$
 (decibels, dB) (1)

w here:

 P_1 = received power with the material present, and P_2 = received power without the material present.

If the receiver readout is in units of voltage, use the following equation:

$$SE = 20 \log \frac{V_1}{V_2}$$
 (decibels, dB) (2)

¹This test method is under the jurisdiction of ASTM Committee D-9 on Electrical and Electronic Insulating Materials and is the direct responsibility of Subcommittee D09.12 on Electrical Tests.

Current edition approved April 10, 1999. Published June 1999. Originally published as D 4935-89. Last previous edition D 4935-89 (1994)^{e1}.

² Wilson, P. F., and Ma, M. T., "A Study of Techniques for Measuring the Electromagnetic Shielding Effectiveness of Materials," NBS Technical Note 1095,

May 1986. ³ Adams, J. W., and Vanzura, E. J., "Shielding Effectiveness Measurements of Plastics," NBSIR 85-3035, January 1986.

⁴ Annual Book of ASTM Standards, Vol 10.01.

where:

 V_1 and V_2 are the respective voltage levels with and without a inaterial present.

According to these equations, SE will have a negative value if less power is received with the material present than when it is absent.

4. Significance and Use

4.1 This test method applies to the measurement of SE of planar materials under normal incidence, far-field, plane-wave conditions (E and H tangential to the surface of the material).

dynamic range of the measurement system, and the accuracy of by an experienced operator using good equipment. Deviations 4.2 The uncertainty of the measured SE values is a function the ancillary equipment. An uncertainty analysis is given in Appendix X1 to illustrate the uncertainty that may be achieved from the procedure in this test method will increase this of material, mismatches throughout the transmission line path, uncertainty.

SE. A program may be generated from the source code in 4.3 Approximate near-field values of SE may be calculated for both E or H sources by using measured values of far-field Appendix X2 that is suitable for use on a personal computer.

and absorbed power may be accomplished by the addition of a reflection and absorption. Separate measurement of reflected 4.4 This test method measures the net SE caused by calibrated bidirectional coupler to the input of the holder.

Apparatus

5.1 A basic equipment setup is shown in Fig. 1.

and notched matching grooves to maintain a characteristic holder are given in the annex. The specimen holder is an enlarged, coaxial transmission line with special taper sections impedance of 50 Ω throughout the entire length of the holder. variations greater than \pm 0.5 Ω are corrected. There are three important aspects to this design. First, a pair of flanges in the screws are used to connect the two sections of the holder 5.2 Specimen Holder-Physical dimensions of a specimen This impedance is checked in accordance with 7.1, and any of energy into insulating materials through displacement current. Second, a reference specimen of the caused by the load specimen. Third, non-conductive (nylon) dominating the desired displacement currents necessary for the middle of the structure hold the specimen. This allows capacisame thickness and electrical properties as the load specimen causes the same discontinuity in the transmission line as is together during tests. This prevents conduction currents from correct operation of this specimen holder. tive coupling

5.3 Signal Generator-A source capable of generating a ators are useful in increasing the effective dynamic range for sinusoidal signal over the desired portion of the frequency range specified in 1.2. A $50-\Omega$ output impedance is needed to minimize reflections due to mismatches. Precision step attenu-SE measurements.

pable of measuring signals over the same frequency range as the signal generator in 5.3. A wide dynamic range is desirable in order to achieve a wide dynamic range of measured SE Receiver-A device with a 50- Ω input impedance cavalues. Typically, either a spectrum analyzer or a field intensity meter is used. 5.4

5.5 Coaxial Cables and Connectors- These are devices for connecting power between specific components without causing interference with other components. These should all have conconnectors. Precision 14-mm connectors give lower mismatch errors and are more reliable under heavy usage than other connectors, but are more expensive and are not used on most a 50- Ω characteristic impedance. Double-shielded cables pronectors provide more reliability and less leakage than BNC vide lower leakage than single-shielded cables. Type-N generators or receivers.

the any changes in incident specimen holder. The material under test usually causes a large also cause variations of the incident power by changing the generator impedance loading. Use of a bidirectional coupler excessively decrease the dynamic range of the measurement specimen holder from the signal generator and the receiver. Their main purpose in this system is for impedance matching. A10-dB, $50-\Omega$ attenuator should be used on each end of the reflection of energy back into the signal generator. This may power due to this loading. Attenuators greater than 10 dB will isolate 5.6 Attenuators-These are devices used to allows monitoring and correcting system.

6. Test Specimens

6.1 The reference and load specimens must be of the same material and thickness. Both are shown in Fig. 2. Dimensions are shown in Fig. 3. The load specimen can be larger than the outer diameter of the flange on the holder, but keeping them to the dimensions shown in Fig. 3 will expedite handling.

difference in the average thicknesses is less than 25 µm and the Specimen thickness is a critical dimension. For the best repeatability of SE measurements, reference specimen and load specimen must be identical in thickness. For this method, two specimens are considered to have identical thickness if the thickness variation within and between specimens is less than % of the average. 6.2

6.3 Materials of the specimens may be either homogeneous or inhomogeneous, single or multiple layered, and conducting

4[]b D 4935

6

FIG. 3 Drawing That Gives Dimensions of Reference and Load Specimens

r insulating. Measured SE values of inhomogeneous materials are dependent on geometry and orientation, and results are less repeatable than for homogeneous materials.

6.4 Before tests, condition test specimens for 48 h at 23 \pm 2°C and 50 \pm 5% relative humidity. Tests must be performed immediately upon removal from conditioning environment.

7. Preparation of Apparatus

7.1 An initial check of the specimen holder should be performed with a time-domain reflectometer or other suitable instrument in order to ensure that a characteristic impedance of $50 \pm 0.5 \Omega$ has been achieved during construction, and that this impedance has not been degraded during shipment or handling. A time-domain system can give location of a mismatch in addition to its magnitude.

7.2 Each time the ancillary equipment is connected to the specimen holder, good practice requires measurement of a reference specimen in order to ensure the measurement system is in proper working order.

7.2.1 The dynamic range of the system can be checked by comparing the maximum signal level obtained with a reference specimen to the minimum signal level obtained when using a metallic load specimen. The lower limit of the measurement system sensitivity is a function of the sensitivity and bandwidth of the receiver. Narrowing the bandwidth of the receiver lowers the detectable level, but increases the measurement time. Leakage due to connectors or cables may reduce the DR of the ystem by providing a parallel signal path that does not pass through the specimen. If a step attenuator placed in series with the specimen holder causes a change in the minimum signal detected that corresponds to a change in attenuator setting, and

if the step attenuator itself does not cause a leakage path, leakage is negligible and the DR measured above is correct. If the levels do not correspond, the attenuation should be increased until a one-to-one correspondence is achieved to determine the DR. Since leakage from a coaxial connector is determined not only by the quality of the connector, but also by the amount of torque used in tightening the connector, connections should be rechecked.

7.2.2 If a standard reference specimen such as gold film deposited on mylar is available, measurement of its value can provide ensurance that the entire system is working properly. A specimen that has 5 Ω per square resistance should give a measured SE of -32 ± 3 dB. Any other known specimen may be used to check setup-to-setup repeatability.

7.2.3 Careful handling of the specimen holder and specimens is important.

7.3 Preparation of 7.2 should be run in accordance with procedures of Section 8.

8. Procedure

8.1 Follow the preparation of apparatus in accordance with 7.2 whenever the measurement system has been reconfigured or not used for several days.

8.2 Prepare two specimens in accordance with Section 6.

8.3 Determine all frequencies for which SE values are to be measured. The specimen mounting procedure described in 8.4 requires more time and effort than changing frequency, so it is more efficient to record values at all frequencies for the reference specimen, change to the load specimen, and then record load values at these same frequencies. This procedure can be automated if a computer and ancillary equipment with ([]) D 4935

IEEE-488 Bus capability are available.

8.4 The procedure for inserting the specimens is as follows: Jese a support structure (a large roll of tape or special stand) to support the specimen holder in a vertical position. Remove two nylon screws, turn the holder end for end, remove the other two nylon screws, and carefully lift off the upper half of the holder. An indented, soft foam pad is useful for holding this upper half of the specimen holder while continuing the installation or removal of specimens. Place the two pieces of the reference specimen on the flange of the bottom half of the specimen holder, taking care that the disk for the center conductor is aligned correctly. Use small amounts of transparent tape as needed. Replace the holes for the ender that had been removed so that the holes for the ender that had been then reinstall two nylon screws. Turn the holder that that been then reinstall two nylon screws. Reconnect the

8.5 Measure the received power (or voltage) while using the reference specimen. Record the measured received values as P_2 or V_2 values at each frequency.

8.6 Replace the reference specimen with the load specimen. 8.7 Measure the received power with the load specimen. Record these measured values as P_1 or V_1 values at the same frequencies used in 8.5. If this value is within 10 dB of the smallest detectable signal of the measurement system, either

the receiver bandwidth must be decreased and the measurement repeated, or the SE value is beyond the dynamic range of the measurement system and hence the SE value is reported as exceeding the DR of the system.

8.8 If the recorded units were watts, use the power ratio equation (1) to calculate SE. If the recorded units were volts, use the voltage ratio Eq 2 from 3.2.5 to calculate SE.

9. Report

9.1 The report should give test specimen identification and measured values of SE at each frequency of measurement.9.2 Values of SE based on measured values from 8.7 that

9.2 Values of SE based on measured values from 8.7 that were within 10 dB of the smallest detectable signal of the measurement system should be noted as exceeding the DR of the measurement system.

10. Precision and Bias

10.1 Precision and bias are inherently affected by the choice of apparatus and specimens. For analysis and details, see Appendix X1.

11. Keywords

11.1 electromagnetic shielding; far field; near field; shielding; shielding effectiveness (SE)

ANNEX

(Mandatory Information)

A1.

A1.1 This annex contains a set of figures suitable for use in the construction of a specimen holder which has been shown to produce reliable measurements. They were contributed by the National Institute of Standards and Technology (formerly

NBS). Corrections to these figures were contributed by W. E. Measurements.⁵

A1.2 These figures are for one half of two identical halves of the specimen holder.

A1.2.1 Additional parts required are Type N male connectors (two required) and $^{1/4}$ by 20 by 1 nylon screws (four required). The Type N connector is Midwest Microwave number $2679M.^6$

⁵ A complete specimen holder is available from W. E. Measurements, P.O. Box 18056, Boulder, CO 80308. ⁶ Available from Midwest Microwave Inc., 3800 Packard Road, Ann Arbor, MI

^o Available from Midwest Microwave Inc., 3800 Packard Road, Ann Arbor, MI 48104.

([]) D 4935

SAMPLE HOLDER ASSEMBLY

PART F

PART B

PART G

PARTIAL ASSEMBLY SHOWING FLANGE MACHINING DETAILS FIG. A1.9 Partial Assembly Drawing

APPENDIXES

(Nonmandatory Information)

X1. ESTIMATE OF UNCERTAINTY OF SE MEASURED VALUES

X1.1 This appendix gives an estimate of uncertainty in the measured values of SE. The sources of error considered are operator errors, specimen-caused errors, and measurement-system errors.

X1.2 Operator errors may be caused by either carelessness or lack of experience and training. No bound can be placed on such errors, but the deviation from any norm may be large enough that an experienced observer will be able to determine that the results are indeed erroneous. X1.3 Specimen-caused errors are due to irregularities in "pecimens, either in preparation or in inherent structure." sotropic, homogeneous specimens with smooth surfaces will give the most repeatable results. If the reference specimen and load specimen are of different thickness, a bias error will be introduced. If both specimens are of the same thickness, but

have irregular thickness over each specimen, random errors will be introduced. Inhomogeneities or anisotropicities in specimens cause various effects depending on size, distribution, and geometric arrangement. Experience with measurements on many types of specimens indicates that repeatability of measured data may be expected except when the surface is rough. A round-robin of measurements made on different types of specimens bears this out. X1.4 Measurement-system errors are caused by impedance mismatches, generator instabilities, leakage paths, limited dynamic range, limited frequency range and receiver errors. To the extent that an experienced, well-trained operator can make measurements over the appropriate frequency range, within the dynamic range of the system, avoid leakage paths within the measurement system's dynamic range, use suitable attenuators

to avoid mismatches, monitor and adjust input power to keep it onstant, then measurement-system errors may be reduced to a very modest part of the total error.

X1.5 Table X1.1 gives a summary of estimated errors under favorable conditions by a skilled operator.

time period is very relevant. If no attenuators were used, the with the load specimen installed, the impedance seen by the signal generator is almost a short circuit for conductive the output power to vary from one condition to the other. These ments. The random error that relates to drift over a few minute since, in one case, with the reference specimen installed in the men holder. The actual change of impedance level seen by the signal generator may also load the signal generator and cause The systematic error in the receiver is probably irrelevant since the SE values are based on difference measuremismatch error on the generator side would be excessive, holder, the impedance seen by the signal generator is determined almost entirely by the receiver, and, in the other case, specimens. The actual change in impedance is greatly reduced by the attenuator between the signal generator and the specichanges can be monitored by use of a bi-directional coupler, and corrections can be made to compensate for them. This coupler is not shown as part of the setup shown in Fig. 1, so the X1.6

TABLE X1.1 Summary of Estimated Incertainties

Source	Systematic	Random
'ismatch	±0.5 dB	±0.5 dB
ower instability in signal generator	±0.4 dB	±0.4 dB
Receiver calibration	±0.3 dB	±0.1 dB
Total	±1.2 dB	+ 1.0 dB

error given for generator instability is based on no compensation. The size of the corrections measured with a coupler were the basis to determine the magnitude of this effect if no compensation is used.

formed by 5 different individuals at 5 different organizations on 5 sets of specimens of 3 different materials indicate what level of agreement may be expected. These results reflect variations due to all causes. Results from all 5 sets are not included, since for this specimen based on measurements by 5 individuals on 5 specimens was 0.9 dB. A second material, carbon coated on standard deviation for this specimen based on measurements measurements by 5 individuals on 5 specimens was 6.0 dB. For all three materials, the same specimen holder and numbered specimens were used. Each of the 5 individuals used different Results from a round robin of measurements pera few data points are obvious outliers, probably caused by operator error. One material, stainless steel deposited on an ABS base, had a very smooth surface. The standard deviation 1 side of an ABS base, was not quite as smooth, and the by 5 individuals on 5 specimens was 2.0 dB. The third material, nickel coated on an ABS base, showed substantial surface roughness. The standard deviation for this specimen based on ancillary equipment. X1.7

X1.8 The systematic uncertainty, or bias error, is \pm 1.2 dB. The random error, based on a standard deviation of 2.5 dB from the round robin results on reasonably smooth specimens, is within \pm 5 dB.

X2. COMPUTER PROGRAM FOR CALCULATING NEAR-FIELD SE VALUES

X2.1 This appendix contains a short computer program for use with a personal computer. The program calculates nearfield values of (SE) based on measured values of far-field SE. It produces approximate values, and as explained in Footnote 2, these values vary as a function of many factors, and therefore they should be used as estimates only. There are several approximations that apply. Nevertheless, these calculated values may serve as guidelines by providing knowledge concerning approximate near-field SE values without having to make the much more difficult measurements necessary to obtain either the near-field electric (E) or magnetic (H) SE values. X2.2 The source file is written in (ASCII) code for an appropriate Fortran-77 compiler. Executable versions that do not require compilation are available for computers with or without math coprocessors.

X2.3 Three inputs are required, the positive measured SE value in dB of a material that has a flat frequency response rom 100 to 1000 MHz, the separation distance between 2 coaxially oriented magnetic dipoles, and the separation distance between 2 coaxially oriented electric dipoles.

X2.4 The approximations made in the computer program are that $k_0 * Z_0 << 1$, that the material is electrically thin, and that $Z_0 - D \approx Z_0$

where:

- $Z_0 =$ separation distance between the elemental dipoles, and
 - D = specimen thickness. If the measured SE curve is not flat with frequency or if the material is anisotropic or mulitlayered, these approximations are not valid.

X2.5 Frequencies between 1 and 1000 MHz are used; values for SE for near-field E and near-field H are calculated. The output is in tabular form. The first column is frequency in MHz, the second column is SE of near-field H, the third column is SE of near-field E, and the fourth column repeats the input values of far-field SE. All SE values are in dB. The data may be directed into an ASCII file by use of the Disk Operating System (DOS) pipe command '>filename' for conversion to input data for spreadsheet and graphing programs.

X2.6 The computer program is shown in Fig. X2.1.

4[]b D 4935

ROGAM SE THIS FROMEWARE THIS FROMEWARE VIAITD AS LONG AS WOAZD C<1. THE MATERIAL THE DEPENDENT TO AROUND IN WAITD AS LONG AS WOAZD C<1. THE MATERIAL THE UPPENDENT VIAIT TO AROUND I GHZ. FEAL FLOT NO. WOLL XO.WO THAT FLOT NO. WOLL XO.WO THAT ALL THO FOLL AND AROUND I GHZ. FEAL FLOT NO. TO LOUD THAT ALL THO FOLL AND AROUND I GHZ. FEAL FLOT NO. TO LOUD SCIENCE AND AROUND I GHZ FEAL FLOT FLOT FLOT FEAL FLOT FEAL FLOT FEAL FLOT FEAL FLOT FLOT FLOT FEAL FLOT FLOT FLOT FEAL FLOT FEAL FLOT FLOT FLOT FLOT FLOT FEAL FLOT FEAL FLOT FLOT FLOT FLOT FLOT FEAL FLOT FEAL FLOT FLOT FLOT FEAL FLOT FEAL FLOT FEAL FLOT FEAL FLOT FEAL FLOT FEAL FLOT FLOT FLOT FEAL FLOT FEAL FLOT The American Society for Testing and Materials takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM Headquarters. Your comments will receive careful consideration at a meeting of the responsible technicab meeting which you may attend. If you feel that your comments were not received a fair hearing you should make your views known of the ASTM Committee on Standards, 100 Barr Harbor Drive, West Conshohocken, PA 19428.